ar X iv : m at h / 06 12 11 7 v 1 [ m at h . D G ] 5 D ec 2 00 6 Nilradicals of Einstein solvmanifolds

نویسنده

  • Y. Nikolayevsky
چکیده

A Riemannian Einstein solvmanifold is called standard, if the orthogonal complement to the nilradical of its Lie algebra is abelian. No examples of nonstandard solvmanifolds are known. We show that the standardness of an Einstein metric solvable Lie algebra is completely detected by its nilradical and prove that many classes of nilpotent Lie algebras (Einstein nilradicals, algebras with less than four generators, free Lie algebras, some classes of two-step nilpotent ones) contain no nilradicals of nonstandard Einstein metric solvable Lie algebras. We also prove that there are no nonstandard Einstein metric solvable Lie algebras of dimension less than ten.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 06 12 03 5 v 2 1 1 D ec 2 00 6 Dark energy induced by neutrino mixing

The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

متن کامل

ar X iv : h ep - t h / 06 12 03 5 v 1 5 D ec 2 00 6 Dark energy induced by neutrino mixing

The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

متن کامل

ar X iv : m at h / 06 12 24 2 v 1 [ m at h . A P ] 9 D ec 2 00 6 Optimal Uniform Elliptic Estimates for the Ginzburg - Landau System

We reconsider the elliptic estimates for magnetic operators in two and three dimensions used in connection with Ginzburg-Landau theory. Furthermore we discuss the so-called blow-up technique in order to obtain optimal estimates in the limiting cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008